報告簡介:Nonlocal diffusion is introduced to describe the movement or interaction of some organisms between non-adjacent spatial locations. In this talk, we study the nonlocal version of the classical Stefan problem. We first demonstrate the formulation, wellposedness and some fundamental properties of nonlocal Stefan problem. Then we verify the convergence of nonlocal Stefan problem to classical Stefan problem under optimal convergence conditions. This is joint work with Xinfu Chen and Maolin Zhou.
李芳教授簡介:本科畢業(yè)于浙江大學(xué),博士畢業(yè)于美國明尼蘇達(dá)大學(xué)?,F(xiàn)在中山大學(xué)數(shù)學(xué)學(xué)院工作,,教授,博士生導(dǎo)師,。主要研究非線性橢圓拋物方程,。這些方程涉及生物、化學(xué),、材料等很多科學(xué)領(lǐng)域,。近年來,關(guān)注反應(yīng)擴(kuò)散方程中的非局部效應(yīng)等相關(guān)問題?,F(xiàn)主持國家自然科學(xué)基金面上項目,,曾主持多項國家自然科學(xué)基金項目、上海市浦江人才計劃項目,、上海市自然科學(xué)基金面上項目,、廣東省自然科學(xué)基金面上項目,曾參與國家自然科學(xué)基金重點項目和數(shù)學(xué)天元基金重點專項,。研究成果多次發(fā)表在J. Math. Pures Appl., J. Funct. Anal., Calc. Var. PDE,,Indiana Univ. Math. J.等國際數(shù)學(xué)期刊上。
版權(quán)所有 ? 佛山大學(xué)