?
劉昱清 講師
學(xué)歷學(xué)位:博士研究生/工學(xué)博士
導(dǎo)師類別:碩士研究生導(dǎo)師
研究方向:自感知混凝土,、固廢資源化利用,、結(jié)構(gòu)健康監(jiān)測(cè)/無(wú)損檢測(cè),、3D打印超材料設(shè)計(jì)及應(yīng)用,、混凝土全壽命質(zhì)量控制
聯(lián)系方式:13794492852/liu.yuqing@fosu.edu.cn
個(gè)人簡(jiǎn)介
劉昱清,男,,博士,,土木與交通學(xué)院講師、碩士生導(dǎo)師,,日本學(xué)術(shù)振興會(huì)(JSPS)特別研究員(全球通過(guò)率約10%),。2006-2013年分獲濟(jì)南大學(xué)學(xué)士,、碩士學(xué)位,2018年獲中國(guó)地震局工程力學(xué)研究所工學(xué)博士學(xué)位,,師從邢鋒院士,,期間于廣東省濱海土木工程耐久性重點(diǎn)實(shí)驗(yàn)室(深圳大學(xué))聯(lián)合培養(yǎng)(2014-2018),師從邢鋒院士和董必欽教授,。2018-2019年任深圳大學(xué)研究助理,,2019-2021年任JSPS特別研究員(京都大學(xué)),2021-2022年任京都大學(xué)研究員,,2022至今任佛山大學(xué)特聘青年研究員,。近年來(lái)主持日本文部省學(xué)術(shù)振興會(huì)基金和佛山市博士后科研啟動(dòng)項(xiàng)目各1項(xiàng),參與國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目,、聯(lián)合基金,、面上項(xiàng)目等多項(xiàng),發(fā)表SCI論文38篇(中科院一區(qū)/二區(qū)28篇),,總被引1430余次,,h-index為21,獲授權(quán)發(fā)明專利 2 件,,實(shí)用新型專利 5 件?,F(xiàn)為國(guó)際材料與結(jié)構(gòu)研究實(shí)驗(yàn)聯(lián)合會(huì)(RILEM)高級(jí)會(huì)員,TC317-ACP,、TC-QPA成員,國(guó)際聲發(fā)射學(xué)會(huì)(ISAE),、中國(guó)硅酸鹽學(xué)會(huì),、佛山市青年科技工作者協(xié)會(huì)等會(huì)員,并擔(dān)任Construction and Building Materials,、Journal of Building Engineering,、Engineering Structure、Sensors and Actuators: A. Physical等多本SCI期刊審稿人,。
學(xué)習(xí)與工作經(jīng)歷
2006.09--2010.07 濟(jì)南大學(xué) 土木工程 本科 工學(xué)學(xué)士
2010.09--2013.07 濟(jì)南大學(xué) 防災(zāi)減災(zāi)工程及防護(hù)工程 研究生 工學(xué)碩士 導(dǎo)師:秦磊 教授,、黃世峰 教授
2013.09--2018.06 中國(guó)地震局工程力學(xué)研究所 結(jié)構(gòu)工程 研究生 工學(xué)博士 導(dǎo)師:邢鋒 院士
2014.04--2018.06 廣東省濱海土木工程耐久性重點(diǎn)實(shí)驗(yàn)室(深圳大學(xué))聯(lián)培博士 導(dǎo)師:邢鋒 院士、董必欽 教授
2015.03--2015.05 浙江大學(xué) 力學(xué)與航空航天學(xué)院 訪問(wèn)學(xué)生 導(dǎo)師:干湧 副教授
2018.10--2019.07 廣東省濱海土木工程耐久性重點(diǎn)實(shí)驗(yàn)室(深圳大學(xué)) 研究助理 合作導(dǎo)師:HAN Ningxu 教授
2019.07--2021.07 日本學(xué)術(shù)振興會(huì)(JSPS)特別研究員(京都大學(xué)) 合作導(dǎo)師:Prof. SHIOTANI Tomoki
2021.07--2022.07 日本京都大學(xué) 社會(huì)基盤工學(xué)專攻 基礎(chǔ)設(shè)施先端技術(shù)實(shí)驗(yàn)室 研究員
2022.10--至今 佛山大學(xué) 土木與交通學(xué)院 特聘青年研究員
科研項(xiàng)目
1. 佛山市人社局,,博士后科研啟動(dòng)項(xiàng)目:基于集成式智能骨料的早齡期混凝土質(zhì)量演化規(guī)律研究,,30萬(wàn),在研,,主持,。
2. 日本文部省學(xué)術(shù)振興會(huì):Grant-in-Aid for JSPS Fellows:19F19747, 複合的弾性波手法によるコンクリート品質(zhì)評(píng)価法の確立, 2019/07–2021/07, 2,300,000 JPY, 已完成,主持,。
3. 國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目,,51538007,,濱海鋼筋混凝土結(jié)構(gòu)全壽命性能智能調(diào)控與提升體系研究,2016/01-2020/12,,300萬(wàn)元,,已結(jié)題,參與,。
4. 國(guó)家自然科學(xué)基金聯(lián)合基金項(xiàng)目, U1801254, 濱海工程混凝土銹蝕智能抑制系統(tǒng), 2019/01- 2022/12, 255萬(wàn)元, 已結(jié)題, 參與,。
5. 國(guó)家自然科學(xué)基金面上項(xiàng)目,51478270,,濱?;炷磷悦庖呦到y(tǒng)設(shè)計(jì)與性能研究,2015/01-2018/12,,86萬(wàn)元,,已結(jié)題,參與,。
6. 國(guó)家自然科學(xué)基金面上項(xiàng)目,,51378239,基于水泥基壓電智能復(fù)合材料的鋼筋銹蝕原位監(jiān)測(cè)方法研究,,2014/01-2017/12,,80萬(wàn)元,已結(jié)題,,參與,。
7. 國(guó)家自然科學(xué)基金面上項(xiàng)目, 51878411, 濱海混凝土銹蝕表征與抑制研究, 2019/01-2022/12, 60萬(wàn)元, 已結(jié)題, 參與,。
8. 國(guó)家自然科學(xué)基金面上項(xiàng)目, 51678368, 雜散電流對(duì)濱海鋼筋混凝土結(jié)構(gòu)的腐蝕機(jī)理及劣化模型研究, 2017/01至 2020/12, 62萬(wàn)元, 已結(jié)題, 參與,。
9. 國(guó)家自然科學(xué)基金青年項(xiàng)目,51508337,,適用于濱海環(huán)境的高品質(zhì)綠色結(jié)構(gòu)混凝土設(shè)計(jì)與耐久性研究,,2016/01至 2018/12, 20萬(wàn)元,已結(jié)題,,參與,。
論文成果
在《Cement and Concrete Research》、《Cement and Concrete Composites》,、《Construction and Building Materials》,、《Materials & Design》、《建筑材料學(xué)報(bào)》等國(guó)內(nèi)外高水平期刊發(fā)表學(xué)術(shù)論文38篇(中科院一區(qū)/二區(qū)28篇),。部分代表性成果列表如下:
1. Topology-optimized lattice enhanced cementitious composites. Materials & Design, 244 (2024) 113155.
2. Identification of hydration stages: An innovative study of ultrasonic coda waves using integrated sensing element (ISE). Construction and Building Materials, 401 (2023) 132764.
3. Novel self-similar re-entrant auxetic metamaterials (SREAM): Design, mechanical property, and geometric optimization. Polymer Testing, 122 (2023) 108015.
4. Novel lozenge-chiral auxetic metamaterials (LCAMs): Design and numerical studies. Materials Letters, 331 (2023) 133440.?
5. Research on in-situ corrosion process monitoring and evaluation of reinforced concrete via ultrasonic guided waves. Construction and Building Materials, 321 (2022) 126317.?
6. Roles of CSH gel in the microstructure and piezoelectric properties variation of cement-based piezoelectric ceramic composite. Materials Letters, 306 (2022) 130952.
7. Cement-based piezoelectric ceramic composites for sensing elements: a comprehensive state-of-the-art review. Sensors, 21 (2021) 3230.
8. Influence of hydration capacity for cement matrix on the piezoelectric properties and microstructure of cement-based piezoelectric ceramic composites. Materials Characterization, 179 (2021) 111390.?
9. Piezoelectric properties and microstructure of ceramicrete-based piezoelectric composites. Ceramics International, 47 (2021) 29681–29687.
10. Guided wave based corrosion process monitoring with embedded smart element. In: Sixth International Conference on Construction Materials: Performance, Innovations, and Structural Implications. August 27-29, 2020. Fukuoka, Japan.
11. Interpretation on the influence of chloride ion on early hydration evolution for cementitious materials by a non-contact monitoring method, Construction and Building Materials, 199 (2019) 138-142.
12. Identification of corrosion products and 3D distribution in reinforced concrete using X-ray micro computed tomography. Construction and Building Materials, 207 (2019) 304-315.?
13. Visualized tracing of crack self-healing features in cement/microcapsule system with X-ray microcomputed tomography. Construction and Building Materials, 179 (2018) 336-347.?
14. Study on the effect of chloride ion on the early age hydration process of concrete by a non-contact monitoring method. Construction and Building Materials, 172 (2018) 499-508.
15. Dispersion of graphene oxide agglomerates in cement paste and its effects on electrical resistivity and flexural strength. Cement and Concrete Composites, 92 (2018) 145-154.?
16. Chemical self-healing system with novel microcapsules for corrosion inhibition of rebar in concrete. Cement and Concrete Composites, 85 (2018) 83-91.
17. 3D visualized tracing of rebar corrosion-inhibiting features in concrete with a novel chemical self-healing system. Construction and Building Materials, 168 (2018) 11-20.
18. Visualized tracing of rebar corrosion evolution in concrete with x-ray microcomputed tomography method. Cement and Concrete Composites 92 (2018) 102–109.
19. Investigation on early hydration features of magnesium potassium phosphate cementitious material with the electrodeless resistivity method. Cement and Concrete Composites, 90 (2018) 235-240.
20. Electrochemical feature for chloride ion transportation in fly ash blended cementitious materials. Construction and Building Materials, 161 (2018) 577–586.?
21. 基于XCT技術(shù)的混凝土鋼筋智能緩蝕系統(tǒng)性能表征.?建筑材料學(xué)報(bào), 2018, 21(1): 33-40.
22. Monitoring reinforcement corrosion and corrosion-induced cracking by x-ray microcomputed tomography method. Cement and Concrete Research, 100 (2017) 311–321.?
23. Non-destructive tracing on hydration feature of slag blended cement with electrochemical method. Construction and Building Materials, 149 (2017) 467-473.
24. Performance recovery concerning the permeability of concrete by means of a microcapsule based self-healing system. Cement and Concrete Composites, 78 (2017) 84-96.
25. 基于X-ray uCT技術(shù)的鋼筋銹脹特征分析. 深圳大學(xué)學(xué)報(bào)理工版, 2017, 34(6): 583-588.
26. 濱?;炷粱瘜W(xué)自修復(fù)微膠囊制備及性能研究.?功能材料, 2017, 48(7): 7006-7011.?
27. In-situ crack propagation monitoring in concrete elements embedded with cement-based piezoelectric ceramic sensors. Construction and Building Materials, 126 (2016) 361–368.?
28. Feasibility study on corrosion protection of steel bar in a self-immunity system based on increasing OH? content. Construction and Building Materials, 125(2016) 742–748.
29. Tracing hydration feature of aluminophosphate cementitious materials by means of electrochemical impedance method. Construction and Building Materials, 113 (2016) 997–1006.
30. Characterization and evaluation of the surface free energy for cementitious materials. Construction and Building Materials, 110 (2016) 163-168.
31. Electrochemical impedance interpretation for the fracture toughness of carbon nanotube-cement composites. Construction and Building Materials, 114 (2016) 499–505.
32. Self-healing features in cementitious material with urea–formaldehyde/epoxy microcapsules. Construction and Building Materials, 106 (2016) 608-617.?
33. Evolutionary trace for early hydration of cement paste using electrical resistivity method. Construction and Building Materials. 119 (2016) 16–20.
34. In-situ structural health monitoring of a reinforced concrete frame embedded with cement-based piezoelectric smart composites. Research in Nondestructive Evaluation, 27 (2016) 216–229.
35. In situ stress monitoring of the concrete beam under static loading with cement-based piezoelectric sensors. Nondestructive Testing & Evaluation, 30 (2015) 312-326.
36. Study on the microstructure of cement-based piezoelectric ceramic composites. Construction and Building Materials, 72 (2014) 133–138.
專利成果
1. 一種鋼筋混凝土結(jié)構(gòu)應(yīng)力原位在線監(jiān)測(cè)方法,201410161590.6 ?
2. 一種X射線CT層析掃描軸壓實(shí)驗(yàn)配套的制樣模具, 201621211465.2
3. 一種X射線CT層析掃描彎曲試驗(yàn)的加載裝置, 201621211536.9
4. 一種X射線CT層析掃描鋼筋腐蝕實(shí)驗(yàn)配套的制樣模具, 201621211756.1
5. 一種分離式HOPKINSON壓桿實(shí)驗(yàn)的試樣模具, 201520456428.7
6. 分離式HOPKINSON壓桿實(shí)驗(yàn)的試樣模具, 201520458510.3
7. ?精確調(diào)控的鋼筋加速銹蝕的系統(tǒng)和方法, 201710338762.6
獲獎(jiǎng)情況
1. 日本學(xué)術(shù)振興會(huì)特別研究員(JSPS Fellow)(2019.7~2021.7)
學(xué)術(shù)兼職
1. 國(guó)際材料與結(jié)構(gòu)研究實(shí)驗(yàn)聯(lián)合會(huì)(RILEM)高級(jí)會(huì)員
2. International Society on Acoustic Emission (ISAE): ISAE members(2019~)
3. 中國(guó)硅酸鹽學(xué)會(huì) 會(huì)員
4. 佛山市青年科技工作者協(xié)會(huì) 會(huì)員
5. 佛山市土木建筑學(xué)會(huì) 會(huì)員
6. Construction and Building Materials,、Engineering Structures,、Journal of Materials Research and Technology、Journal of Building Engineering,、Sensors and Actuators: A. Physical,、Sensors,、Applied Sciences等多本SCI期刊審稿專家